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Scale invariance and invariant scaling in a mixed hierarchical system

M. G. Shnirman and E. M. Blanter
International Institute for Earthquake Prediction Theory and Mathematical Geophysics, Warshavskoye sh 79, korp 2,

Moscow 113556, Russia
~Received 12 May 1999!

We consider a mixed hierarchical model with heterogeneous and monotone conditions of destruction. We
investigate how scaling properties of defects in the model are related with heterogeneity of rules of destruction,
determined by concentration of the mixture. The system demonstrates different kinds of criticality as a general
form of system behavior. The following forms of critical behavior are obtained: stability, catastrophe, scale
invariance, and invariant scaling. Different slopes of the magnitude-frequency relation are realized in areas of
critical stability and catastrophe. A simple relation between the slope of magnitude-frequency relation and
parameters of the mixture is established.@S1063-651X~99!08610-9#

PACS number~s!: 05.65.1b, 91.30.2f, 05.90.1m
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I. INTRODUCTION

Self-organized criticality, introduced by Bak, Tang, a
Wiesenfeld, reflects a stable form of the self-similarity o
served in the behavior of various multiscale systems@1#. In
seismology the power-law form of the magnitude-frequen
relationship is well known as the Gutenberg-Richter l
@2,3#, which characterizes scaling properties of seismic
both for the world seismicity and for different seismic r
gions:

log10N~M !5a2bM.

Here N(M ) denotes the number of earthquakes with
magnitudeM. The slope of the magnitude-frequency relati
b is close to unity for the world seismicity@3#, but it takes
different values in various seismic regions@4#. Recently, the
Gutenberg-Richter law is usually associated with the s
organized criticality of the seismic process@5#.

For any abstract or natural system the evolution of wh
is characterized by events of different scales, the power-
form of the magnitude-frequency relation means the s
similarity of the distribution of events:

p~ l 11!5lp~ l !,

wherep( l ) denotes the density of events at scalel, and factor
l is determined by the slope of the magnitude-freque
relation. A special case of the unity slopeb51 defines the
scale invariance of events:

p~ l !5const

for all scales of the system.
In the avalanche sandpile models@1# the self-organized

criticality is characterized by a linear magnitude-frequen
relation with the slope equal to unity. When the se
organized criticality appears as a result of a stable fixed p
of the transition function@6,7# it means the scale invarianc
of the system and the slope of the magnitude-frequency
lation in this case is close to unity. Deviations from the un
slope exist only for a few low scale levels, when the syst
is far enough from the attractive critical state. A similar r
PRE 601063-651X/99/60~5!/5111~10!/$15.00
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sult was obtained in@8#. When the self-organized criticality
appears as a result of a feedback relation which attracts
trajectory to a critical point, the slope of the magnitud
frequency relation depends on parameters of healing@9#.
Various slopes of the magnitude-frequency relation were
tained in@10# because of complex interactions between d
ferent kinds of movements. However, the model is very co
plicated and it is difficult to see the origin of differen
scalings in this system.

To clarify the origin and conditions of different kinds o
scaling we consider a simple hierarchical model of destr
tion, the has no temporal evolution and which behavior
which is governed by a small number of parameters. A si
lar model was suggested in@11#, the unstable scale invari
ance was established in the single point of phase trans
from stability to catastrophic behavior. The stable scale
variance~self-organized criticality! was observed in a simila
model with nonmonotone@6# or heterogeneous@7# condi-
tions of destruction. Although simple static hierarchic
models are very abstract, they often demonstrate similar
tures as a complicated dynamical systems~compare, for ex-
ample,@11# with @9# and@6# with @8#! but allow a clearer and
simpler description. In the present investigation we consi
a mixed hierarchical model suggested in@7#. It was shown in
@7# that stable scale invariance~self-organized criticality! in
this model is a result of strong heterogeneity of destruct
conditions. Now we shall demonstrate that the self-organi
criticality with different scalingl is a general form of be-
havior of such systems.

The description of the model is given in Sec. II; eleme
tary kinds of system behavior are described in Sec. III.
Secs. IV–VI we show the relation between the observ
scaling and the involved heterogeneity for elementary kin
of system behavior; more complicated and more gen
cases are considered in Secs. VII and VIII. Results and p
sible application are discussed in Sec. IX.

II. GENERAL DESCRIPTION OF THE MODEL

We consider a hierarchical system of elements w
branching numbern ~Fig. 1!. Each element at levell 11 is
relevant to a group ofn elements of the previous levell.
5111 © 1999 The American Physical Society
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Each element of the system may be in one of two poss
states: broken or unbroken. An element in the broken sta
referred to as a defect.

The state of an element at levell 11 is determined by
numberk of defects in the relevant group ofn elements of
the inferior levell. The rule which defines how the state
an element at levell 11 depends on the numberk of defects
on the relevant group of the previous levell is referred to as
a condition of destruction. As usual, we assume that co
tions of destruction are independent on levell, which means
self-similarity of the model structure. However, this restr
tion does not determine self-similarity in the distribution
defects, but allows different kinds of system behavior,
pending on concrete conditions of destruction@6–11,13#.
The system behavior is described by concentrations of
fectsp( l ) at levell ( l 51, . . . ,L). Below we investigate sta
tistical properties of densities of defectsp( l ), when levell
grows for different conditions of destruction.

Heterogeneity.When the condition of destruction is th
same for all elements of the system, the model is ca
homogeneous. A heterogeneousmodel generally has differ
ent conditions of destruction for different elements. Thus,
homogeneous model is a degenerated case of a hete
neous one.

Monotonicity.The model hasmonotoneconditions of de-
struction, when each number of defectsk.k0 in a group of
level l corresponds to a defect of superior levell 11, if k0
defects in this group are relevant to the defect. When it is
true, the condition of destruction isnonmonotone.

It follows from the definition that homogeneous an
monotone conditions of destruction may be defined by a lo
est numberk0 of defects in a group ofn elements which is
relevant to a defect of a superior level. Consequently, th
exist n (n is a branching number! different monotone and
heterogeneous rules of destruction. In the case of nonm
tone and homogeneous conditions it is necessary to defi
set of numberski of defects relevant to the superior defe
This was the case for@6#, where conditions of destructio
were homogeneous and nonmonotone.

The importance of heterogeneity in relation with critic
phenomena was previously noted@14#. We have considered
in @7# a particular case of a monotone and heterogene
system in and have shown that the scale invariance is rel
with high heterogeneity of the system. Now we investigat
more general case of such a model and describe other k
of critical behavior obtained for heterogeneous and mo

FIG. 1. Hierarchical system with branching numbern53.
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A. Critical numbers and concentrations of the mixture

The numberk of defects in a group ofn elements suffi-
cient to bring forth a defect at the superior level is referred
as a critical number. Thus, an element of levell 11 is a
defect if the relevant group of levell contains the critical
numberk or more defects. Any configuration withk or more
defects in a group ofn elements is referred to as a critic
configuration.

In the homogeneous hierarchical model considered in@6#
the critical number is the same for all elements of the syst
The heterogeneous model suggested in@7# may be performed
as a mixture of elements whose destruction is governed
different critical numbersk (k51, . . . ,n). In @7# the simplest
case ofn53 was considered; here we investigate this mo
for arbitraryn.

The fraction of elements determined by the critical nu
berk is denoted asak ; the sum of concentrationsak is equal
to unity (a11•••1an51). It is assumed that fractionsak do
not change with levell. Concentrationsak determine the het-
erogeneity of the system. A homogeneous system with c
cal numberk corresponds to the degenerated case of the m
ture, when only one concentrationak is equal to unity and all
other concentrations are zero.

B. Densities of defects

We denote asp( l ) the density of defects at levell. The
density of defects at the first levelp(1) is a parameter of the
model and densities of defects at higher levels may be
culated, when the densityp(1) and concentrations of th
mixtureak are fixed. The density of defects at levell 11 can
be expressed from the density of defects at the previous l
l as follows:

p~ l 11!5F@p~ l !#, ~1!

where F(p) denotes the probability to obtain critical con
figuration of defects in a group ofn elements, if the prob-
ability of a defect is equal top. We have assumed that con
centrations ak do not change with level, therefore th
transition functionF is the same for all levels of the system

The density of configurations, containing exactlyk defects
in a group ofn elements at levell, is equal to

Wk5Cn
kpk~12p!n2k, ~2!

wherep5p( l ) is the density of defects at levell, Cn
k denote

the binomial coefficients, andn is a branching number. In a
homogeneous system with critical numberk the density of all
critical configurations is equal to the sum of all configur
tions with k or more defects:

Fk5(
j 5k

n

Wk .

In the heterogeneous case the transition functionF is a
weighted sum ofCk , where each term of the sum is take
with the relevant concentration of the mixtureak :

F~p!5 (
k51

n

akFk .
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Thus, the transition functionF is completely determined by
concentrationsak :

F~p!5 (
k51

n

Cn
kpk~12p!n2k(

i 51

k

ai . ~3!

C. Magnitude-frequency relation

In studies of seismicity the magnitude of an earthquak
actually used as a measure of the energy of the earthquak
linear relation between the magnitude of the earthquake
the linear size of its source is established@12#:

log10S'M1const. ~4!

A linear relation between the logarithm of the number
earthquakes and its magnitude, known as a Gutenb
Richter law, is established for the world seismicity@3# and
for particular seismic regions@4#:

log10N5a2bM. ~5!

We assume that the linear size of elements in the sys
falls with level S( l )5S0nl and its number similarly grows
Ne( l )5CnL2 l (C denotes number of elements at the high
level L of the system!. In seismology, the magnitude o
earthquake is related with the linear size of the source a
M; log10S. Following @6–8,10#, we consider the magnitud
as a characteristic of the size of a defect at levell:

M ~ l !5 l log10n ~6!

~we use a decimal logarithm in respect to the geophys
tradition!. Expressing the average number of defects at
level l,

N~ l !5CnL2 l p~ l !, ~7!

we obtain from Eqs.~7! and ~6! the magnitude-frequenc
relation for our model, which is an analog of Eq.~5! for
seismicity and reads

log10N~ l !52M ~ l !1 log10p~ l !1const. ~8!

It is obvious that the form of the magnitude-frequen
relation is completely determined by densities of defe
p( l ) and by its evolution with levell. If densities of defects
p( l ) tend to a constant valuep0.0, when levell grows, then
the magnitude-frequency relation~8! is approximately linear
with a slope equal to unity. A power form convergence
densities p( l ) to zero determine nonunity slopes of th
magnitude-frequency relation. Both cases satisfy
Gutenberg-Richter law~5! and perform general forms o
model behavior, as will be shown below.

D. Events

Some defects of levell correspond to a defect of the su
perior levell 11. In real observations the defect entering in
defect of the superior level cannot be detected. Only
defect of the highest range may be observed as an ev
Therefore we define events as defects of levell which do not
enter in a defect of the superior levell 11.
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In the general case of the system, the transition functioF
is defined by Eq.~3! and the density of events at levell
,L is expressed as follows:

P~ l !5
1

n (
k51

n

kCn
kpk~ l !@12p~ l !#n2kS 12(

i 51

k

ai D . ~9!

At the highest level all defects are events:

P~L !5p~L !. ~10!

Expressing the average number of events:

n~ l !5CnL2 l P~ l ! ~11!

the magnitude-frequency relationship takes the form, sim
to Eq. ~8!,

log10n~ l !52M ~ l !1 log10P~ l !1const. ~12!

If densities of defectsp( l ) tend to zero, when levell
grows @see for example, Fig. 2~b!#, then it may be easily
obtained from Eq.~9! that densities of events also tend
zero @Fig. 2~c!# and have the same order as densities of
fects:

P~ l !;~12a1!p~ l !. ~13!

It follows from Eqs.~8!, ~12!, and~13! that in this case the
magnitude-frequency relationship has the same slope
both numbers of defects and numbers of events.

When densities of defectsp( l ) tend to a constant value
0,p0,1, then densities of eventsP( l ) also tend to a con-
stant value 0,P0,1, determined by takingp5p0 in the
right side of Eq.~9!. Thus, the magnitude-frequency relatio
for events, Eq.~12!, is linear with a slope equal to unity
exactly like the magnitude-frequency relation written for d
fects, Eq.~8!.

It is really important to distinguish events from defec
when densities of defectsp( l ) increase with level and tend t
unity @Fig. 3~b!#, because densities of eventsP( l ) in this
case tend to zero@see Eq.~9! and 3~c!#, for all levels l,
excepting the highest one@Eq. ~10! and Fig. 3~b!#.

III. HETEROGENEITY AND CRITICALITY

In this section we consider all possible kinds of syste
behavior and its relation with heterogeneity of the syst
reflected in concentrations of the mixtureak . We are espe-
cially interested in the behavior characterized by a lin
form of the magnitude-frequency relation. Such system
havior is referred to as critical. We shall classify differe
kinds of critical behavior observed in this system.

The form of the magnitude-frequency relation~8! is de-
termined by the behavior of densities of defectsp( l ), when
level l grows. The transition functionF is monotone, Eq.~3!,
therefore there always exists a limit 0< lim

l→`
p( l )<1, so

there are only three possibilities:~1! p( l ) tend to zero,~2!
p( l ) tend to a constant value 0,p0,1, and~3! p( l ) tend to
unity.

The rate of convergence is actual for the form of t
magnitude-frequency relation, whenp( l ) tend to zero or
unity @cases~1! and~3!#. When the limitp0 is between 0 and
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FIG. 2. Area of stability (n53): ~a! Transi-
tion function in the homogeneous case~dashed
line! and general heterogeneous case~solid line!
are below the dash-dotted diagonal line;~b! den-
sity of defects tends to zero for all values o
p(1): ~1! 0.2, ~2! 0.5, ~3! 0.9; ~c! density of
events tends to zero for all p~1!: ~1! 0.2, ~2! 0.2,
~3! 0.8; ~d! magnitude-frequency relation in ho
mogeneous case~dashed line! has a downward
bend, in the heterogeneous case~solid line! it is
linear.
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1 the magnitude-frequency relation is linear with a slo
equal to unity and the rate of convergence has no influe
on the value of the slope. We call case~1! stability, because
there are no defects at high levels of the system; case~2!
means thescale invariance; case~3! is calledcatastrophe,
because the top level of the system is completely destro
Below we consider these three cases and all possible kind
convergence for different parameters of the system and
scribe scaling properties of the system in each case.

IV. STABILITY

Let us begin with a specific degenerated homogene
case, when the branching numbern53 and the critical num-
ber k5n53 for all elements of the system. The transitio
function F is then the following:
e
ce

d.
of
e-

us

F~p!5p3. ~14!

As is shown in Fig. 2~a!, the transition function lies below
the diagonal line, thereforeF(p),p for all values ofp. The
map F, defined by Eq.~14!, has two fixed points: 0 and 1
the first one (p50) is stable, the other one (p51) unstable
@Fig. 2~a!, dashed line#. Thus, for all values of initial density
of defectsp(1), densities of defectsp( l ) and densities of
eventsP( l ) tend to zero, when levell grows@Figs. 2~b! and
2~c! dashed lines#. The perturbation of the first level does n
actually reach higher levels of the system, therefore this k
of behavior is referred to as a stability.

The relation between the density of defectsp( l ) and the
level l may be easily obtained from Eqs.~1! and ~14!:

p~ l !5p~1!3l 21
, ~15!
al

ll

is

het-
FIG. 3. Area of catastrophe (n53): ~a! Tran-
sition function is above the dash-dotted diagon
line in the homogeneous case~dashed line!, de-
generated heterogeneous case~dotted line!, and
general heterogeneous case~solid line!; ~b! den-
sity of defects tends to unity for allp(1): ~1! 0.1,
~2! 0.9; ~c! density of events tends to zero for a
p(1): ~1! 0.1, ~2! 0.9; ~d! magnitude-frequency
relation has a jump for highest magnitude, it
linear for M.3 in the general case~solid line!
and has a downward bend in the degenerated
erogeneous case~dotted line!.
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wherep(1) denotes the density of defects at the first leve
the system.

The logarithm of the total number of defects at levell is
thus expressed from Eq.~7! as follows:

log10N~ l !52 l log10n1 log10p~ l !1const. ~16!

So, we obtain from Eqs.~15! and ~16! the exponential rela-
tion between the logarithm of the number of defectsN( l )
and the scale levell:

log10N~ l !52 l log10313l 21log10p~1!1const. ~17!

It follows from Eqs. ~8! and ~17! that the magnitude-
frequency relation has an exponential downward bend@Fig.
2~d!, dashed line#:

log10N~M !52M1b32aM1const, ~18!

whereb anda are positive.

Critical stability

Now we consider a nondegenerate case of the mixt
close to the homogeneous case of stability. Let us cons
the system with a branching numbern53, when elements
with critical numbersk51, k52, andk53 are mixed with
concentrationsa1 , a2, anda3, respectively. The concentra
tion a3 is close to unity, and concentrationsa1 and a2 are
close, but not exactly equal to zero.

Similarly to the previous case, the transition functionF is
posited below the diagonal line and has two fixed points:
stable pointp50 and the unstable one,p51 @Fig. 2~a!, solid
line#. Thus, densities of defectsp( l ) and eventsP( l ) tend to
zero, when levell grows, for all values of initial densityp(1)
@Figs. 2~b! and 2~c! solid lines#. From Eqs.~1! and~3! in the
first order ofp( l ) we obtain

p~ l 11!

p~ l !
;3a1 . ~19!

It follows from Eqs. ~7!, ~6!, ~8!, and ~19! that the
magnitude-frequency relation has a linear form with a slo
log10a1 /log103 @Fig. 2~d!, solid line#:

log10N~M !5
log10a1

log103
M1const. ~20!

The linear form of the magnitude-frequency relati
means the critical behavior of the system, therefore this k
of behavior is referred to as acritical stability. It follows
from Eqs.~19! and ~20! that in the area of stability the sys
tem demonstrate critical behavior, whena1.0. Thus, the
critical stability is a general case of system behavior a
noncritical stability is a degenerate case.

In the simplest case of branching numbern53 the para-
metric area of critical stability may be easily described. T
conditions must be fulfilled by the transition functionF, in
order to obtain stability behavior: no fixed points exist insi
the interval (0,1), excepting 0 and 1; the fixed point 0
stable. It was shown in@7# that for n53 concentrations of
the mixture satisfy two conditions:a1,1/3 and (a11a2)
,2/3 ~Fig. 4!.
f

e,
er
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V. CATASTROPHE

Let us always begin with a specific degenerated homo
neous case, when the branching numbern53 and the critical
numberk5n51 for all elements of the system. The trans
tion functionF is then the following:

F~p!512~12p!3. ~21!

As is shown in Fig. 3~a! ~dashed line!, the transition function
is posited above the diagonal line, thereforeF(p).p for all
values ofp. The mapF, defined by Eq.~21!, has two fixed
points: 0 and 1, the first one (p50) is unstable, the othe
one (p51) is stable. Thus, for all values of initial density o
defectsp(1), densities of defectsp( l ) tend to unity, when
level l grows @Fig. 3~b!, dashed lines#. High levels of the
system are almost destroyed, therefore this kind of beha
is referred to as a catastrophe. Densities of events are
equal to zero,P( l )50 @see Eq.~9!#, excepting the density o
events of the highest levelP(L)5p(L)'1. Thus, the cata-
strophic behavior in the homogenous case is equivalent
single event of the highest level.

A. Delocalization

Let us consider a heterogeneous degenerated case o
system with branching numbern53 when concentration o
the mixturea3 is equal to zero. Concentrationa1 is close to
unity and concentrationa2 is not far from zero. It is also a
case of catastrophic behavior: densities of defectsp( l ) tend
to unity @Fig. 3~b!, dotted lines#, when level l grows, and
densities of eventsP( l ) tend to zero@Fig. 3~c!, dotted lines#.
The magnitude-frequency relation, considered for eve
demonstrates a strong downward bend and a peak at
highest level@Fig. 3~d!, dotted line#. Such behavior produce
a gap in the interval of magnitudes before the highest o
that is similar to the delocalization phenomenon, observe
the Burridge-Knopoff model@15#, in lattice models@16#, and
in a generalized dynamical hierarchical model@13#, and as-
sociated with characteristic earthquakes@17#.

FIG. 4. Different parametric areas of system behavior forn
53. The mixture is parametrized by two free parameters:c5a1

andd5a11a2. There are four areas of system behavior: 1 stabil
2 catastrophe; 3 unstable scale invariance; 4 stable scale invari
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FIG. 5. Unstable scale invariance:~a! Transi-
tion function forn53 (a150, a251); ~b! den-
sity of defects; ~c! density of events; ~d!
magnitude-frequency relation for events. Diffe
ent lines correspond to different values of initi
density of defects:p(1)50.45, solid line;p(1)
5p050.5, dotted line;p(1)50.55, dashed line.
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B. Critical catastrophe

Let us now consider a nondegenerate case of the mix
close to the catastrophic one. In the system with branch
numbern53, concentrations of the mixture are taken as f
lows: a1 is close to unity,a2 anda3 are not far from zero.

The transition functionF is posited above the diagona
line and has two fixed points: the unstable pointp50 and
the stable one,p51 @Fig. 3~a!, solid line#. Thus, densities of
defectsp( l ) tend to unity and densities of eventsP( l ) tend
to zero, when levell grows, for all values of initial density
p(1) @Fig. 3~b!, solid lines#. From Eqs.~1!, ~3!, and ~9! in
the first order of 12p( l ) we obtain

P~ l 11!

P~ l !
;3a3 . ~22!

It follows from Eqs. ~11!, ~6!, ~12!, and ~22! that the
magnitude-frequency relation has a linear form with a slo
log10a3 /log103 @Fig. 3~d!, solid line#:

log10n~M !5
log10a3

log103
M1const. ~23!

The linear form of the magnitude-frequency relati
means the critical behavior of the system, therefore this k
of behavior is referred to as a critical catastrophe. It follo
from Eqs.~22! and ~23!, that in the area of catastrophe th
system demonstrates critical behavior, whena3.0. Thus,
similarly to stability, the critical catastrophe is a general ca
of system behavior and noncritical catastrophe is a dege
ate case.

It was obtained in@7# that for the simplest case of branc
ing numbern53 the parametric area of critical catastrop
is determined by two conditions imposed on concentrati
ak of the mixture:a1.1/3 and (a11a2).2/3 ~Fig. 4!.
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VI. SCALE INVARIANCE

Let us suppose that transition functionF has a fixed point
p0 inside the interval~0,1! and different from zero and unity
0,p0,1. When the initial intensity of defectsp(1) is equal
to the value of the fixed pointp(1)5p0, then all densities of
defects take the same valuep( l )5p0 for all levels of the
system. Thus, the system demonstrates the scale invaria
It follows from Eq.~8! that the magnitude-frequency relatio
for the case of scale invariance is linear with a slope equa
unity, which means the critical behavior of the system.
follows from Eqs.~9! and ~12! that the linear form with a
unity slope of the magnitude-frequency relation exists a
when events instead of defects are considered. Thus,
scale invariance represents a specific form of critical beh
ior, characterized by a unity slope of the magnitud
frequency relation. In both cases of critical stability and c
tastrophe, considered above, the slope of the magnitu
frequency relation was greater than unity@see Eqs.~20! and
~23!#.

A. Unstable scale invariance

In the simplest system with branching numbern53 the
transition functionF defined by Eq.~3! always has two fixed
points,p50 andp51. It has a third fixed point 0,p5p0
,1, when one of two following pairs of conditions for con
centrations of the mixture are fulfilled@7#:

a1,1/3 and a11a2.1/3, ~24!

a1.1/3 and a11a2,1/3. ~25!

In the first case~24! the fixed pointp5p0 is unstable; in the
second case~25! it is stable. In this section we consider th
case where the unstable fixed pointp5p0 exists.

It follows from Eqs. ~3! and ~24! that both fixed points
p50 andp51 of the transition functionF are stable@Fig.
5~a!#. Thus,F(p),p for all p,p0 and densities of defect
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FIG. 6. Stable scale invariance:~a! Transition
function for n53 (a150.5, a250); ~b! density
of defects;~c! density of events;~d! magnitude-
frequency relation for events. Different lines co
respond to different values of initial density o
defects: p(1)50.2, solid line; p(1)5p050.5,
dotted line;p(1)50.7, dashed line. For allp(1)
the magnitude-frequency relation is linear with
slope equal to unity.
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p( l ) defined by Eq.~1! tend to zero, when levell grows, for
all values of initial densitiesp(1),p0 @Fig. 5~b!, solid line#.
Densities of events also tend to zero forp(1),p0 @Fig. 5~c!,
solid line#. If p.p0, thenF(p).p; thus, for all p(1).p0
densities of defectsp( l ) tend to unity and densities of even
P( l ) tend to zero, when levell grows @Figs. 5~b! and 5~c!,
dashed lines#. The point p5p0 is fixed for the transition
functionF, thereforep( l )5p0 andP( l )5P0 for all levels l,
if p(1)5p0 @Figs. 5~b! and 5~c!, dotted lines#. This kind of
behavior is referred to as the unstable scale invariance~Fig.
4!. As was shown, in the simplest case ofn53, the unstable
scale invariance is related with the phase transition from
bility @when p(1),p0] to catastrophic behavior~when
p(1).p0). The scale invariance is obtained in the sing
point p(1)5p0 and only this point is characterized by th
unity slope of the magnitude-frequency relation@Fig. 5~d!#.

B. Stable scale invariance

Let us consider the system with branching numbern53,
when conditions~25! for concentration of the mixture ar
fulfilled. It follows from Eqs.~3! and~25! that the transition
function F has two unstable fixed points,p50 and p51,
and the stable one,p5p0 @Fig. 6~a!#. Thus for all values of
initial density of defectsp(1) densities of defectsp( l ) de-
fined by Eq.~1! tend to the valuep0, when levell grows
@Fig. 6~b!#. Similarly, densities of eventsP( l ) tend to a con-
stant valueP0 @Fig. 6~c!#. Thus, the scale invariance may b
observed for all values ofp(1) and the magnitude-frequenc
relation has the asymptotically linear form with a slope eq
to unity @Fig. 6~d!#. This kind of behavior is referred to as th
stable scale invariance or the self-organized criticality~Fig.
4!. In the area of stable scale invariance the slope
magnitude-frequency relation is equal to unity for all valu
of parametersak andp(1).

Concentrations of the mixtureak reflect heterogeneity o
the considered system: in homogenous systems one con
tration is equal to unity, others are zero; in the system w
a-

l

f
s

en-
h

strong heterogeneity concentrationsak are far from unity. It
follows from conditions~25! that stable scale invariance ca
not be achieved in the homogenous monotone model: c
centrations of the mixture relevant to the most different cr
cal numbers (a1 and a3 in the considered case! must be
greater than 1/3. Thus, the stable scale invariance in the
havior of the system indicates high heterogeneity, num
cally described by corresponding conditions for concen
tions ak of the mixture.

VII. FIXED POINTS AND THE SYSTEM BEHAVIOR:
GENERAL CASE

Let us consider a general case of the transition funct
F(p) defined by Eq.~3!. The transition functionF(p) is a
sum of monotone functionsF(p) with positive coefficients
ak , therefore it also monotonically increases withp, there-
fore the functionF monotonically increases, and the deriv
tion F8(p) is positive inside the interval (0,1).

Let us consider, the transition functionF(p) with m fixed
points p5pi , where i 51, . . . ,m. It follows from Eq. ~3!,
that p50 andp51 are the fixed points of the mapF, thus
p150 andpm51. It is known that a fixed pointpi is stable
when the absolute value of the derivationF8(pi) is less than
unity, and it is unstable, whenuF8(pi)u is greater than unity.
The derivationF8 is positive, thereforepi is stable, when
F8(pi),1 and it is unstable whenF8(pi).1.

Let us consider two consequent fixed points of the mapF:
pi andpi 11. Fixed points of the mapF(p) are zero points of
the mapF(p)2p. There is no zero of the mapF(p)2p
betweenpi and pi 11, therefore the derivation@F(p)2p#8
5F8(p)21 has different signs inpi and pi 11. Thus, if
F8(pi),1, then F8(pi 11.1 and vice versa. Therefor
stable and unstable fixed points of the mapF alternate.

It follows from Eq. ~1! and monotone increasing of th
transition functionF that densities of defectsp( l ) monotoni-
cally tend to a limit valuep* , which, generally, depends o
the initial density of defectsp(1). It follows from the conti-
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nuity of the transition functionF that this limit pointp5p0
must be a fixed point of the mapF(p). Thus, the number o
possible kinds of behavior demonstrated by the system w
transition functionF is completely determined by the num
ber of fixed points of the mapF. When the fixed point 0
,pi,1 is unstable, then it governs the unstable scale inv
ance forp(1)5pi . If the fixed point 0,pi,1 is stable, then
it determine the area of the stable scale invariance@the self-
organized criticality~SOC!#. The area of stability exists i
the fixed pointp150 is stable. The area of catastrophe exi
if the fixed pointpm51 is stable. The unstable scale inva
ance is realized in all unstable fixed pointsp(1)5pi , differ-
ent from 0 and 1. Thus, all kinds of system behavior~stabil-
ity, catastrophe, stable, and unstable scale invariance! may
be realized in the behavior of one system, if the correspo
ing transition function has sufficient number of fixed poin
As illustrations, we suggest below two examples of this co
plex behavior for the system with branching numbern55.

A. Complex case: stability-SOC-catastrophe

The transition function for the system withn55 is deter-
mined by five concentrations of the mixtureak , whose sum
is equal to unity. To reduce the number of free parame
we consider a symmetrical case, whena15a5 and a25a4.
So, the transition function is completely determined by t
concentrations of the mixture, for example,a1 anda2:

F~p!55a1p~12p!4110~a11a2!p2~12p!3

110@12~a11a2!#p3~12p!2

15~12a1!p4~12p!1p5. ~26!

In the symmetric case the transition function always h
three fixed points: 0, 0.5, and 1. It can be easily obtain
that five fixed points of the mapF exist, when

10~a11a2!115a127.0, and 5a21,0 or

10~a11a2!115a127,0, and 5a21.0.

When 10(a11a2)25a123.0 and 5a121,0 ~Fig. 7,
area 4!, the transition functionF has five fixed points:p
50, p50.5, andp51 are stable;p5p0 and p512p0 are
unstable@Fig. 8~a!#. The area of stability corresponds to in
tial densities of defects 0<p,p0, densities of defectsp( l )
tend to zero, when levell grows @Fig. 8~b!, curve 1#. The
area of stable scale invariance~SOC! corresponds top0
,p(1),12p0, and densities of defectsp( l ) tend to 0.5,
when levell grows @Fig. 8~b!, curves 2,3#. The area of ca-
tastrophe corresponds to 12p0,p(1)<1, densities of de-
fects tend to 1@Fig. 8~b!, curve 4!. The unstable scale invari
ance is realized forp(1)5p0 andp(1)512p0. Thus, when
the initial densityp(1) increases, the system passes all p
sible kinds of behavior.

B. Scale invariance: phase transition SOC-SOC

A nontrivial case of scale invariant behavior may be o
tained in the same model, when 10(a11a2)115a127,0
and 5a121.0 @Fig. 7, area 3#. The transition function has
five fixed points@Fig. 8~c!#: two stable (p5p0 and p51
th
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2p0) and three unstable (p50, p50.5, andp51). The ex-
istence of two stable fixed points determines stable scale
variance~SOC! for all values of initial densityp(1), except-
ing the unstable fixed points 0, 0.5, and 1@Fig. 8~d!#.
Nevertheless, whenp(1)50, p(1)50.5, or p(1)51, the
system also demonstrates the scale invariance, but the
stable one. Thus, in this case for all values of the init
density p(1), the scale invariance may be observed. Ho
ever, this is not trivial stable scale invariance, because d
sities of defectsp( l ) tend to two stable limits, depending o
initial densityp(1) @Fig. 8~d!#.

VIII. INVARIANT SCALING

Let us consider a specific case, when all concentration
the mixtureak are equal:ak51/n. After the substitution of
ak into Eq. ~3!, we obtain the transition functionF:

F~p!5p. ~27!

Thus, it follows from Eq.~1! that densities of defectsp( l )
are equal to one another for all levelsl: p( l )5p(1), which
means the scale invariance exists for all values of initial d
sity p(1), no special scale may be distinguished. T
magnitude-frequency relation is always linear with a slo
equal to unity, but this is not appropriate to any special c
centration of destruction at the highest level of the syste
The system does not reach any special critical state, but
critical in any state. This kind of behavior is referred to
the invariant scaling.

It seems that invariant scaling is a degenerated cas
system behavior; only one point in the space of parame
ak exactly corresponds to the invariant scaling. Howev
when parametersak are not very far from this point the valu
F(p) is close top for all p @Fig. 9~a!#. Therefore conver-

FIG. 7. Different parametric areas of system behavior for sy
metric case withn55. The mixture is parametrized by two fre
parametersc5a15a5 and d5a11a25a41a5512a3. There are
four areas: 1, unstable scale invariance~phase transition from sta
bility to catastrophe!; 2, stable scale invariance; 3, nontrivial sca
invariance~phase transition from one stable point to another!; 4, all
possible kinds of primary system behavior~stability, unstable scale
invariance, stable scale invariance, catastrophe! are realized by
changing only initial densityp(1).
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FIG. 8. Complex behavior for symmetric sys
tem with n55. ~a! Transition function (a15a5

50.18, a25a450.28) rescaled with factor 10 in
order to see the difference from the diagon
~dashed! line. ~b! Density of defects for the tran
sition function ~a! for different values ofp(1):
~1! 0.15, ~2! 0.2, ~3! 0.8, ~4! 0.9; ~c! transition
function (a15a550.22, a25a450.12) rescaled
with factor 10;~d! density of defects for the tran
sition function ~c! for different values ofp(1):
~1! 0.1, ~2! 0.4, ~3! 0.6, ~4! 0.9.
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gence of densitiesp( l ) to limits pi is very slow and for a
restricted number of levels it is hardly observed@Fig. 9~b!#.
In fact, the deviation between concentrations of the mixt
ak and 1/n may be quite significant:a15a550.22,a25a4
50.12 for n55 ~Fig. 9!. So, the density of defectsp( l )
conserves its valuep( l ) for several levels of the system th
make this kind of behavior quite general.

IX. DISCUSSION AND CONCLUSIONS

We have suggested a model where the heterogeneit
destruction is governed by concentration of the mixture
different rules. This formalism may be applied both when
system contains elements of different strength, or when
stress field is heterogeneous and therefore different dens
of fractures of smaller scales are necessary to build a frac
of the next range. Although the model is rather abstract
does not reflect particular features of any concrete system
may be considered as a good illustration of the statist
properties of a wide class of multiscale systems, such as
example, the fracturing of samples or earthquakes.

The simple hierarchical model considered above sho
how scaling properties of the system may be related with
heterogeneity of conditions of destruction. In the homo
neous case this system demonstrates critical behavior on
the unstable critical point of phase transition@11#; it is nec-
e
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essary to involve nonmonotone rules of destruction in or
to obtain stable critical behavior@6#. So, for the homoge-
neous monotone model, criticality is a degenerated behav
and general behavior is noncritical.

The behavior of the system became critical when a h
erogeneity of destruction is assumed. It was shown that
magnitude frequency is always linear in a log/log plot, wh
the relevant parameter of the mixture is nonzero. Thus,
the heterogeneous system the critical behavior is a gen
case and noncritical behavior is a degenerated case. Fo
lithosphere of the Earth, for example, it is rather natural
assume heterogeneous rules of destruction instead of ho
geneous ones, therefore the power-law form of
Gutenberg-Richter law for earthquakes is more natural t
the exponential one. This is the simplest explanation of
Gutenberg-Richter law, although it is very abstract.

We may distinguish three kinds of criticality in the beha
ior of the system: general self-similarity, which is charact
ized by a linear magnitude-frequency relation with vario
slopes; scale invariance, which is associated with equal p
abilities of defects at all ranges of the system and unity sl
of the magnitude-frequency relation; and invariant scali
when the system does not reach any special critical state
all states of the system are critical. These three cases are
related with different order of heterogeneity involved in t
system. The general self-similarity exists for any nonze
-

ir
FIG. 9. Invariant scaling for a restricted num
ber of levels.~a! Transition function forn55,
a15a550.22, a25a450.12 ~not rescaled! is
close to the diagonal~dashed! line. ~b! Densities
of defects for first 20 levels slightly change the
initial value: 1, p(1)50.1; 2, p(1)50.4; 3,
p(1)50.6; 4,p(1)50.9.
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concentrations of the mixture. Concentrations of the mixtu
which govern the heterogeneity, are reflected in the slop
the magnitude-frequency relation. In order to obtain sta
scale invariance it is necessary to mix the most fragile
the most rigid elements in high proportions, which mea
high heterogeneity of the system. Invariant scaling emer
in the special situation when all concentrations of the m
ture are equal, all rules of destruction are mixed in eq
proportions. This is the most heterogeneous case of the
ture. Thus, the type of criticality reflects the heterogeneity
the system.
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